97 research outputs found

    Sentinel-1 Imaging Performance Verification with TerraSAR-X

    Get PDF
    This paper presents dedicated analyses of TerraSAR-X data with respect to the Sentinel-1 TOPS imaging mode. First, the analysis of Doppler centroid behaviour for high azimuth steering angles, as occurs in TOPS imaging, is investigated followed by the analysis and compensation of residual scalloping. Finally, the Flexible-Dynamic BAQ (FD-BAQ) raw data compression algorithm is investigated for the first time with real TerraSAR-X data and its performance is compared to state-of-the-art BAQ algorithms. The presented analyses demonstrate the improvements of the new TOPS imaging mode as well as the new FD-BAQ data compression algorithm for SAR image quality in general and in particular for Sentinel-1

    Scalloping Correction in TOPS Imaging Mode SAR Data

    Get PDF
    This paper presents an investigation on scalloping correction in the TOPS imaging mode for SAR systems with electronically steered phased array antennas. A theoretical simulation of the scalloping is performed and two correction methods are introduced. The simulation is based on a general cardinal sine (sinc) antenna model as well as on the TerraSAR-X antenna model. Real TerraSAR-X data acquired over rainforest are used for demonstration and verification of the scalloping simulation and correction. Furthermore a calibration approach taking into account the special TOPS imaging mode properties is introduced

    In-Orbit SAR Performance of TerraSAR-X

    Get PDF
    TerraSAR-X is the first German Radar satellite for scientific and commercial applications. The project is a public-private partnership between DLR and EADS Astrium GmbH. TerraSAR-X consists of a high resolution Synthetic Aperture Radar at X-Band. The radar antenna is based on active phased array technology that allows the control of many different instrument parameters and operational modes (Stripmap, ScanSAR and Spotlight) with various polarizations. Following the TerraSAR-X launch, scheduled for February 2007, it is planned a six month Commissioning Phase covering the characterization and verification of the SAR mission. Within this phase, the Overall SAR System Performance (OSSP) takes care of the correct working and interaction of all SAR system elements essential for obtaining an optimum SAR Performance. The paper covers the first in-orbit characterization and verification results of the SAR system performance for TerraSAR-X operational and experimental modes. This characterization is divided into four phases: Initial Characterization, Scene Characterization –both mostly based on basic and experimental products-, and Verification of TS-X Instrument Command Generation. The different optimization strategies and performance trade-offs are discussed and presented in the paper, including very first TerraSAR-X images. The result of the real SAR data analysis determines the final system baseline and thus the final image quality, e.g. Temperature compensation, Total Zero Doppler Steering, Up/down chirp toggling, transmitted bandwidth, timing interferences, etc. The first section of the paper introduces the activities carried out during the Commissioning Phase for the TerraSAR-X SAR system performance characterization/verification. In the second section, the strategies for the performance optimization and characterization are presented. Finally, the in-orbit SAR performance results are given in section three

    The 2-Look TOPS Mode: Design and Demonstration with TerraSAR-X

    Get PDF
    Burst-mode acquisition schemes achieve wide coverage at the expense of a degraded azimuth resolution, reducing therefore the performance on the retrieval of ground displacements in the azimuth direction, when interferometric acquisitions are combined. Moreover the azimuth varying line-of-sight can induce discontinuities in the interferometric phase when local azimuth displacements are present, e.g., due to ground deformation. In this contribution we propose the interferometric 2-look TOPS mode, a sustaining innovation, which records bursts of radar echoes of two separated slices of the Doppler spectrum. The spectral separation allows to exploit spectral diversity techniques, achieving sensitivities to azimuth displacements better than with StripMap, and eliminating discontinuities in the interferometric phase. Moreover some limitations of the TOPS mode to compensate ionospheric perturbations, in terms of data gaps or restricted sensitivity to azimuth shifts, are overcome. The design of 2-look TOPS acquisitions will be provided, taking the TerraSAR-X system as reference to derive achievable performances. The methodology for the retrieval of the azimuth displacement is exposed for the case of using pairs of images, as well as for the calculation of mean azimuth velocities when working with stacks. We include results with experimental TerraSAR-X acquisitions demonstrating its applicability for both scenarios

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Nadir Margins in TerraSAR-X Timing Commanding

    Get PDF
    This paper presents an analysis and discussion of the Nadir return in the context of radar timing. Results obtained during the Commissioning Phase of TerraSAR-X in verification and measurement of Nadir return and timing margins are shown. Pre-launch assumptions about the Nadir margins were verified and optimized, which led to an improvement in the timing commanding, i.e. a relaxing of the timing. By means of three early acquired TerraSAR-X images which contain Nadir returns their characteristic properties are shown and explained

    Generation and Investigation of Backscatter Mosaics using TerraSAR-X Data

    Get PDF
    Global backscatter data is required for accurate performance estimation and instrument commanding inside the TerraSAR-X and TanDEM-X missions. The goal of this work is the generation of an X-Band backscatter map by assembling images acquired by the TSX satellite. The complete data ground coverage will be achievable with TanDEM-X mission data. An interpolator, that allows the estimation of the on ground backscatter for any required polarization and incidence angle from the available data, has been implemented too. In this paper, the backscatter map generation algorithm will be presented, together with the first obtained results, generated using TSX data
    corecore